EXTRA LAB # 1

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Washing soda consists of hydrated sodium carbonate, $Na_2CO_3 \cdot 10H_2O$. When it is stored it loses some of its water of crystallisation to leave $Na_2CO_3 \cdot xH_2O$. Since water has been lost *x* is no longer an integer.

You will carry out a titration to determine the value of x. You will titrate a solution of the sodium carbonate with hydrochloric acid.

The equation for the reaction is shown.

 $Na_2CO_3 \cdot xH_2O(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(aq) + (x+1)H_2O(l)$

FB 1 is an aqueous solution containing $11.30 \text{ g} \text{ dm}^{-3}$ of $Na_2CO_3 \cdot xH_2O$. **FB 2** is 0.100 mol dm⁻³ hydrochloric acid, HC*l*. bromophenol blue indicator

(a) Method

- Fill the burette with **FB 2**.
- Pipette 25.0 cm³ of **FB 1** into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Carry out a rough titration and record your burette readings in the space below.

final	burette	reading / cm ³	24.20			
initial	burette	reading (cm ³	0.00			
titre / cm ³		24.20	The rough titre is	24.20	. cm ³ .	

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure your recorded results show the precision of your practical work.
- Record in a suitable form, in the space below, all of your burette readings and the volume of **FB 2** added in each accurate titration.

final burette reading/cm3	47.60	26.50	
initial burette reading/cm3	24.20	3.10	
titre /cm ³	23.40	23.40	
best titres	\checkmark	\checkmark	

(b) From your accurate titration results, obtain a value for the volume of **FB 2** to be used in your calculations. Show clearly how you obtained this value.

(c) Calculations

- (i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures.
- (ii) Calculate the number of moles of hydrochloric acid present in the volume of **FB 2** you calculated in (b).

$$N = CV$$

= 0.100 x $\frac{23.40}{1000}$

moles of HCl = $... \partial \cdot 34 \times 10^{-3}$ mol [1]

- (iii) Use the equation on page 1, and your answer to (c)(ii), to calculate the concentration, in moldm⁻³, of Na₂CO₃•xH₂O present in **FB 1**. $N_{a_2}CO_3 \cdot xH_2O$: HO1 : λ $\times : 2 \cdot 34 \times 10^{-3}$ $1 \cdot (7 \times 10^{-3})$ $1 \cdot (7 \times 10^{-3})$ $1 \cdot ($
- (iv) Calculate the value of x in this sample of $Na_2CO_3 \cdot xH_2O$.

Show your working. $\frac{M_{r}}{2} \frac{N_{a_{d}}}{N_{a_{d}}} \frac{CO_{3} \cdot \times H_{d}O}{N_{r}} = \frac{M_{r}}{n} \frac{2}{3} \frac{N_{a_{2}}}{N_{a_{2}}} \frac{CO_{3} \cdot \times H_{d}O}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{CO_{3}}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{CO_{3}}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{CO_{3}}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{CO_{3}}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{CO_{3}}{N_{a_{2}}} \frac{1}{N_{a_{2}}} \frac{1}{N_{a_{2}}}$

[Total: 14]