EXTRA LAB \# 1

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Washing soda consists of hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. When it is stored it loses some of its water of crystallisation to leave $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$. Since water has been lost x is no longer an integer.

You will carry out a titration to determine the value of x. You will titrate a solution of the sodium carbonate with hydrochloric acid.

The equation for the reaction is shown.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{aq})+(x+1) \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FR 1 is an aqueous solution containing $11.30 \mathrm{gdm}^{-3}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$.
FR 2 is $0.100 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
bromophenol blue indicator

(a) Method

- Fill the burette with FB 2.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 1 into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Carry out a rough titration and record your burette readings in the space below.

final burette reading $/ \mathrm{cm}^{3}$	24.20
initial burette reading $/ \mathrm{cm}^{3}$	0.00
titre $/ \mathrm{cm}^{3}$	24.20

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure your recorded results show the precision of your practical work.
- Record in a suitable form, in the space below, all of your burette readings and the volume of FB 2 added in each accurate titration.

final burette reading $/ \mathrm{cm}^{3}$	47.60	26.50	
initial burette reading/ cm	24.20	3.10	
titre $/ \mathrm{cm}^{3}$	23.40	23.40	
best titres	\checkmark	\checkmark	

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a value for the volume of FB 2 to be used in your calculations. Show clearly how you obtained this value.

$25.0 \mathrm{~cm}^{3}$ of FB 1 required

cm^{3} of FB 2. [1]
(c) Calculations
(i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures.
(ii) Calculate the number of moles of hydrochloric acid present in the volume of FB 2 you calculated in (b).

$$
\begin{aligned}
n & =C V \\
& =0.100 \times \frac{23.40}{1000}
\end{aligned}
$$

$$
\text { moles of } \mathrm{HCl}=\ldots 2.34 \times 10^{-3} \mathrm{~mol} \text { [1] }
$$

(iii) Use the equation on page 1, and your answer to (c)(ii), to calculate the concentration, in mol dm ${ }^{-3}$, of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ present in FB 1.

$c=\frac{n}{V}=\frac{1.17 \times 10^{-3}}{25.0 / 1000}$

$$
\begin{array}{l:l}
1 & 2 \tag{1}\\
x & : 2.34 \times 10^{-3} \\
& 1.17 \times 10^{-3} \mathrm{~m} / 2 \mathrm{scm} \text { concentration of } \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}=
\end{array}
$$

\qquad moldm^{-3}
(iv) Calculate the value of x in this sample of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot{ }^{*} \mathrm{H}_{2} \mathrm{O}$.

\qquad

