EXPERIMENT NO. 12

2 When an organic acid, RCOOH , is neutralised by an alkali an exothermic reaction takes place. You will determine the enthalpy change of neutralisation, ΔH, for the following reaction.

$$
\mathrm{RCOOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{RCOONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

In this equation R is an alkyl group.
FA 3 is a solution containing $120.1 \mathrm{~g} \mathrm{dm}^{-3}$ of RCOOH .
FA 4 is aqueous sodium hydroxide, NaOH .
(a) Method

Experiment 1

- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $25.0 \mathrm{~cm}^{3}$ of FA 3 into the cup.
- Measure and record the temperature of this FA 3. Rinse the thermometer.
- Place $25.0 \mathrm{~cm}^{3}$ of FA 4 into the $50 \mathrm{~cm}^{3}$ measuring cylinder.
- Measure and record the temperature of the FA 4 in the measuring cylinder. Rinse the thermometer.
- Tip the FA 4 from the measuring cylinder into the cup. Stir, then measure and record the highest temperature reached.
- Calculate and record the average initial temperature of FA 3 and FA 4.
- Calculate and record the difference between the average initial temperature and the highest temperature reached.
- Rinse and dry the cup for use in Experiment 2.

Experiment 2

- Repeat Experiment 1 using $50.0 \mathrm{~cm}^{3}$ of FA 3 and FA 4. You will need to use the $25 \mathrm{~cm}^{3}$ measuring cylinder twice to measure the FA 3.
- Calculate and record the average initial temperature of FA 3 and FA 4.
- Calculate and record the difference between the average initial temperature and the highest temperature reached.

Experiment number	01	02
Temperature of $F A 3 /{ }^{\circ} \mathrm{C}$	22.0	22.5
Temperature of FA4 $/{ }^{\circ} \mathrm{C}$	22.0	22.5
Average initial temperature $/{ }^{\circ} \mathrm{C}$	22.0	22.5
Final temperature $/{ }^{\circ} \mathrm{C}$	28.0	28.5
Change in temperature $/{ }^{\circ} \mathrm{C}$	6.0	6.0

(b) Calculations

(i) Calculate the energy released in Experiment 1.
(Assume that 4.2 J of energy changes the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.)

$$
\begin{aligned}
& =m C \Delta T \quad \text { or } V C \Delta T \\
& =50 \times 4.2 \times 6.0
\end{aligned}
$$

energy released $=\ldots \ldots . .1260$
(ii) Calculate the number of moles of RCOOH used in Experiment 1. Assume that the relative molecular mass, M_{r}, of RCOOH is 122.

Show your working.

$$
\begin{aligned}
n & =\frac{m}{M r} \\
& =\frac{120.1}{122} \\
& 0.984 m \delta \mathrm{dm}^{-3}
\end{aligned}
$$

$n=C V$

$$
=0.984 \times \frac{25.0}{1000}
$$

$$
0.0246 \mathrm{md}
$$

moles of $\mathrm{RCOOH}=\ldots .0 .0246$ mol [2]
(iii) Calculate the enthalpy change of neutralisation, ΔH, of RCOOH . Assume that the sodium hydroxide is in excess.

$$
\begin{aligned}
& 0.0246 \mathrm{~m} \mathrm{\delta} \\
& 1 \mathrm{~m} \mathrm{\delta}-1260 \mathrm{~J} \\
& \frac{x}{\frac{51219.5}{1000}} \mathrm{Jm}^{-1}
\end{aligned}
$$

$$
\begin{equation*}
\text { enthalpy change of neutralisation of } \mathrm{RCOOH}=\underset{\text { sign }}{\ldots} . \underset{\text { value }}{\ldots} . \tag{1}
\end{equation*}
$$

(c) Each measuring cylinder can be read to an accuracy of $\pm 0.5 \mathrm{~cm}^{3}$.

Calculate the total maximum percentage error in the volumes of solution measured in each of
$\begin{array}{lll}\text { Experiments } 1 \text { and 2. \% error in } \\ \text { Experiment } 1 & \text { the v } \delta \text {. of } F A 3\end{array}=\frac{ \pm 0.5 \mathrm{~cm}^{3}}{25.0 \mathrm{~cm}^{3}} \times 100,1 \%$ error in the vo. of FA4

$$
2 \% \quad: \quad 2 \%=2+2
$$

Experiment 2

$$
\begin{aligned}
& \text { total maximum percentage error }=
\end{aligned}
$$

(d) A student repeated both experiments in (a) using hydrochloric acid in place of RCOOH .

Suggest how the temperature rise when using HCl would compare to the temperature rise recorded in (a). Assume all volumes and concentrations of solutions, in $\mathrm{mol}^{-3}{ }^{-3}$, are the same.

Explain your answer by considering the chemical bonds involved.

