EXPERIMENT NO. 11

2 In this experiment you will determine the enthalpy change of solution, $\Delta H_{\text {sol }}$, for hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. To do this you will measure the temperature change when a known mass of hydrated sodium thiosulfate is dissolved in a known volume of water.

FB 5 is hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

(a) Method

- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $20.0 \mathrm{~cm}^{3}$ of distilled water into the cup.
- Weigh the stoppered container of FB 5 and record the mass.
- Measure and record the initial temperature of the water in the cup.
- Add all the FB 5 to the water in the cup.
- Stir the mixture and record the minimum temperature that is reached.
- Reweigh the stoppered container. Record the mass.
- Calculate and record the mass of FB 5 added to the water and the change in temperature.

I	
II	
III	
IV	
$[4]$	

(b) Calculations
(i) Calculate the energy change of the reaction.
(Assume that 4.2 J of heat energy changes the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.)
Show your working.
energy change $=$
(ii) Calculate the enthalpy change of solution, $\Delta H_{\text {sol }}$, for hydrated sodium thiosulfate.

$$
\Delta H_{\text {sol }} \text { for } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\underset{\text { sign }}{\ldots \ldots . ~} \mathrm{~mol}^{-1}
$$

(iii) Assume that under the same conditions, the enthalpy change of solution, $\Delta H_{\text {sol }}$, for anhydrous sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, is $-7.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Construct a Hess's cycle and determine the enthalpy change for the following reaction. (If you were unable to calculate an answer to (b)(ii), assume a value of $+32.2 \mathrm{kJmol}^{-1}$. Note this is not the correct value.)

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

$$
\Delta H=\underset{\text { sign }}{\text {...... }} \mathrm{kJ} \mathrm{~mol}_{\text {value }} \mathrm{kr}^{-1}
$$

(c) How would your temperature change in (a) be affected if your sample of FB 5 contained a small amount of anhydrous sodium thiosulfate?
Explain your answer.
\qquad
\qquad
\qquad

