EXPERIMENT NO. 11

2 In this experiment you will determine the enthalpy change of solution, ΔH_{sol} , for hydrated sodium thiosulfate, Na₂S₂O₃•5H₂O. To do this you will measure the temperature change when a known mass of hydrated sodium thiosulfate is dissolved in a known volume of water.

FB 5 is hydrated sodium thiosulfate, Na₂S₂O₃•5H₂O.

(a) Method

- Support the cup in the 250 cm³ beaker.
- Use the 25 cm³ measuring cylinder to transfer 20.0 cm³ of distilled water into the cup.
- Weigh the stoppered container of FB 5 and record the mass.
- Measure and record the initial temperature of the water in the cup.
- Add all the **FB 5** to the water in the cup.
- Stir the mixture and record the minimum temperature that is reached.
- Reweigh the stoppered container. Record the mass.
- Calculate and record the mass of **FB 5** added to the water and the change in temperature.

Initial temperature/°C	26.0
Final temperature /c	19.0
Change in temperature /ċ	7.0
Mass & container + FBS/g	18.80
Mass of container + residue/g	14.72
Mass of FBS used/g	4.08

(b) Calculations

(i) Calculate the energy change of the reaction.
(Assume that 4.2J of heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)
Show your working. = mC LT

(ii) Calculate the enthalpy change of solution, ΔH_{sol} , for hydrated sodium thiosulfate.

$$M_{r} \begin{cases} N_{a} S_{2} O_{3} \cdot 5H_{a} D = d48 \cdot d \\ 1 m \Re = \frac{4 \cdot 08}{d48 \cdot d} \\ \hline D \cdot 0.446 m \Re = \frac{4 \cdot 08}{d48 \cdot d} \\ \hline D \cdot 0.446 m \Re = \frac{35853 J}{1000} = 35.9 \\ \hline D \cdot 0.446 m \Re = \frac{1}{2} \\ \hline \Delta H_{sol} \text{ for } Na_{2}S_{2}O_{3} \cdot 5H_{2}O = \frac{1}{1000} \\ \hline Sign = \frac{1}{2} \\ \hline Sign$$

(iii) Assume that under the same conditions, the enthalpy change of solution, ΔH_{sol} , for anhydrous sodium thiosulfate, Na₂S₂O₃, is -7.7 kJ mol⁻¹. Construct a Hess's cycle and determine the enthalpy change for the following reaction.

(If you were unable to calculate an answer to (b)(ii), assume a value of +32.2 kJ mol⁻¹. Note this is not the correct value.)

Δ <i>H</i> =	43.6	kJ mol ⁻¹
sign	value	[2]

(c) How would your temperature change in (a) be affected if your sample of **FB 5** contained a small amount of anhydrous sodium thiosulfate? Explain your answer.

because	Less	be	will	nexature.	tem	in	Change
	exothermic	is	\mathbf{O}	Nazsa	anly drous	of a	A4ca
[1]			3		0	0	
[1] [Total: 10]							