EXPERIMENT NO. 1

In this question you will use a method involving measuring masses. You will find the identity of a Group 2 element, \mathbf{Y} , whose hydrated sulfate has the formula $\mathbf{YSO}_4.7\mathbf{H}_2\mathbf{O}$.

When heated, the hydrated sulfate loses its water of crystallisation to form anhydrous sulfate. The anhydrous sulfate does not decompose at the temperature of the Bunsen flame.

 $\mathbf{YSO}_4.7\mathrm{H}_2\mathrm{O}(\mathrm{s}) \rightarrow \mathbf{YSO}_4(\mathrm{s}) + 7\mathrm{H}_2\mathrm{O}(\mathrm{g})$

FA 4 is the hydrated sulfate of **Y**, **Y**SO₄.7H₂O.

(a) Method

- Weigh the crucible with its lid and record the mass.
- Tip between 1.80g and 2.00g of FA 4 into the crucible.
- Weigh and record the mass of crucible, lid and FA 4.
- Place the crucible on the pipe-clay triangle on the tripod. Put the lid on the crucible and heat gently for about 1 minute.
- Use tongs to remove the lid and heat the crucible strongly for about 4 minutes. Replace the lid and then leave to cool.
- When cool, reweigh the crucible with its lid and contents and record the mass.
- Calculate and record the mass of FA 4 before heating, the mass of residue after heating and the mass of water lost.

(b) Calculations

(i) Calculate the number of moles of water lost on heating FA 4.

moles of H₂O lost = mol [1]

- (ii) Deduce the number of moles of anhydrous YSO_4 that are formed when this water is lost.
 - moles of **Y**SO₄ = mol [1]
- (iii) Use your answer to (ii) and the mass of residue left after heating **FA 4** to determine the relative atomic mass, A_r , of **Y**.

(iv) Identify Y.

Y is[1]

(c) A student did not heat the sample of FA 4 for long enough to remove all the water. What would be the effect of this on the calculated value of the relative atomic mass of Y? Explain your answer.

......[2] [Total: 11]