EXPERIMENT NO. 3

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Iron wire contains impurities. You will investigate the percentage by mass of iron in a sample of iron wire.

A sample of iron wire is reacted with an excess of sulfuric acid to produce a solution of iron (II) sulfate.

$$Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$$

You will titrate the solution of iron(II) sulfate with potassium manganate(VII) of known concentration to determine the amount of iron(II) ions present and hence the percentage by mass of iron in the wire. You may assume the impurities do not form any products that react with potassium manganate(VII).

$$5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(1)$$

FB 1 is 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄.

FB 2 is a solution of FeSO₄ prepared by reacting 6.02 g of iron wire with sulfuric acid to make 1 dm³ of solution.

FB 3 is dilute sulfuric acid, H₂SO₄.

(a) Method

- Fill a burette with **FB 1**.
- Pipette 25.0 cm³ of **FB 2** into a conical flask.
- Use the measuring cylinder to transfer 25 cm³ of **FB 3** into the conical flask.
- Perform a rough titration and record your burette readings in the space below.

final burette readinglems	25.10
initial burette reading lem3	0.50
titre /cm³	24-60

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain that any recorded results show the precision of your practical work.
- Record all of your burette readings and the volume of FB 1 added in each accurate titration.

Results

final burette reading lams	26.50	31.70	36.40	
initial burette reading/cm3	2.40	7.40	12-40	
titre/can3	24.10	24-30	3 4.00	
but titre	✓		V	

H	
III	
IV	
V	
VI	
VII	

	its, obtain a suitable value for the volume of FB 1 to be used by your calculations. Show clearly how you obtained this value.
<u> 24·10 + 24·00</u> &	,
d	
2	5.0 cm ³ of FB 2 required
(c) (i) Give your answers to (ii), (iii)), (iv) and (v) to the appropriate number of significant figures. [1]
(ii) Use your answer to (b) to cap FB 1, which reacted with 25. $n = CV$ $= 0.0200 \times \frac{24.05}{1000}$	
	moles of $MnO_4^- = \frac{4.81 \times 10^{-4}}{10^{-4}}$ mol [1]
25.0 cm³ of FB 2 . mole ro MnQ ₁ :	Fe 3+ 5 1 2.41×10 3m8
4.81×10 ⁻⁴	moles of Fe ²⁺ = $\frac{\partial \cdot 41 \times 10^{-5}}{100}$ mol [1]
(in) Only data the many of insuran	
(iv) Calculate the mass of iron pr	esent in 25.0 cm° of FB 2.
$m = n \times Av$ $= 0.41 \times 10^{3} \times 55.8$	
0.1354	0.105
	mass of Fe = 0.735 g [1]
(v) Calculate the percentage by 0.1359 $0.$	mass of iron in the sample of iron wire. ** by mass of iron in the sample of iron wire. = $\frac{m_{\text{mass}}}{r_{\text{b}}} \frac{p_{\text{pro}}}{r_{\text{b}}} \frac{r_{\text{b}}}{r_{\text{b}}} \times 100$
5.407 8 6 in	= 89.7½ CA 7
percer	stage by mass of iron in iron wire = 89.7 [1]
concentration of sulfuric acid, the determined by working out how m	a piece of iron wire was dissolved in a known volume and number of moles of iron that reacted with the acid could be uch acid was left after the reaction. The amount of excess acid he mixture with a known concentration of sodium hydroxide.
Explain whether the student was	correct.
Student is wrong as sodi	m hydrouide will also react with
$iyon / Fe^{2+} / FeSO_4 = 0$	R impurity in wive can react with sulfunc acid or
10 dium hydroxide.	um bydrauide will also react with R impurity in wive can react with sulfure acid or [1]
	[Total: 14]