EXPERIMENT NO. 2

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

Acids are defined as substances that can donate hydrogen ions, H⁺, to bases. Monoprotic acids contain one H⁺ that can be donated per molecule. Diprotic acids contain two H⁺ that can be donated per molecule.

You will determine by a titration method whether acid **Z** is monoprotic or diprotic.

FA 1 is a solution containing 6.10 g dm⁻³ of acid **Z**. **FA 2** is 0.105 mol dm⁻³ aqueous sodium hydroxide, NaOH. bromophenol blue indicator

(a) Method

- Pipette 25.0 cm³ of FA 1 into a conical flask.
- Fill a burette with **FA 2**.
- Add several drops of bromophenol blue indicator to the conical flask.
- Carry out a rough titration and record your burette readings in the space below.

final burette reading/cm3	26.90
initial burette reading (cm ³	0.40
titre /cm ³	\$6.50
The	e rough titre is

Carry out as many accurate titrations as you think necessary to obtain consistent results.

- Make sure any recorded results show the accuracy of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FA 2** added in each accurate titration.

final burette reading/cm3	31.70	41.70	32.50
initial buyette reading/cm ³	5.40	15.60	6.30
titve/cm ³	2 6·30	æ6·10	26.20
best titre		\checkmark	\checkmark

.... cm³.

26.50

(b) From your accurate titration results, obtain a suitable value for the volume of **FA 2** to be used in your calculations. Show clearly how you obtained this value.

(c) Calculations

(i) Calculate the number of moles of sodium hydroxide present in the volume of FA2 calculated in (b).

$$n = CV$$

$$= 0.105 \times \frac{26.10}{100}$$
moles of NaOH = $...02.74\times10^{-3}$ mol
Then deduce the number of moles of H⁺ present in 25.0 cm³ of FA 1.
 $H_{1}^{+}: OH_{1}^{-}: 1$
 $\partial.74\times10^{-3.0}$
moles of H⁺ in 25.0 cm³ of FA 1 = $...0.74\times10^{-3}$ mol
[1]
(ii) Calculate the number of moles of H⁺ present in 1 dm³ of FA 1.
 $\frac{350}{1000} dm^{-3} - 3.74\times10^{-3.00}$
 $1 dm^{-3} - \chi$
moles of H⁺ in 1 dm³ of FA 1 = $...0.110$ mol [1]
(iii) FA 1 contains 6.10 gdm⁻³ of acid Z. The relative molecular mass of Z is 126.
Calculate the number of moles of Z in 1 dm³ of FA 1.
 $n = \frac{37}{100} = \frac{6.10}{166} = 0.484 \text{ mol}$
moles of Z in 1 dm³ of FA 1 = $...0.484$, mol [1]
(iv) Use your answers to (ii) and (iii) to determine whether Z is a monoprotic or a diprotic acid.
Explain your answers to (ii) and (iii) to determine whether Z is a monoprotic or a diprotic acid.
Explain your answers to (ii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
Explain your answers to (ii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
Explain your answers to (ii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
Explain your answers to (ii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
Explain your answers to (iii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
Explain your answers to (iii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
Explain your answers to (iii) and (iii) to determine (the there Z is a monoprotic or a diprotic acid.
 $\frac{1}{1: 0}$
 $\frac{1}{1: 0}$
 $\frac{1}{1: 0}$
 $\frac{1}{1: 0}$
 $\frac{1}{1: 0}$
 $\frac{1}{1: 0}$