WORKSHEET NO. 2

1 Zinc metal is extracted from ores that, in addition to compounds of zinc, can also contain copper and silver. This means zinc metal is often impure.

You will investigate the percentage purity of a sample of zinc by reacting it with excess aqueous copper(II) sulfate and comparing the enthalpy change of the displacement reaction with the accepted value.

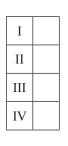
 $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$

FB 1 is $1.00 \text{ mol dm}^{-3} \text{ copper}(\text{II})$ sulfate, CuSO_4 . **FB 2** is powdered impure zinc, Zn.

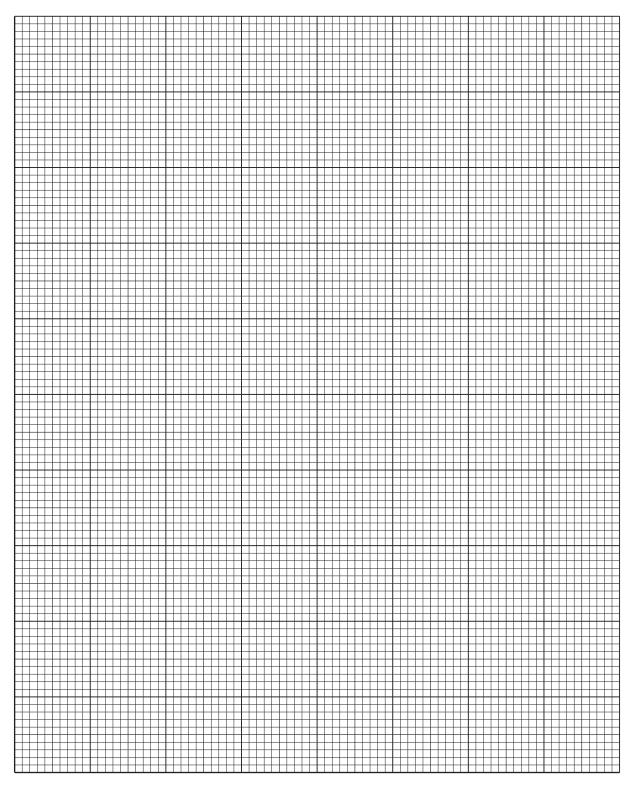
(a) Method

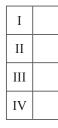
Read the whole method before starting any practical work.

- Weigh the container with **FB 2** and record the mass in the space below.
- Support the plastic cup in the 250 cm³ beaker.
- Use the measuring cylinder to transfer 25 cm³ of **FB 1** into the plastic cup.
- Place the thermometer in the solution and record the initial temperature in a suitable table of results. Tilt the cup if necessary so that the bulb of the thermometer is fully covered. This is the temperature at time zero (*t* = 0).
- Start timing and do not stop the clock until the whole experiment has been completed at t = 8 minutes.
- Measure and record the temperature of the FB 1 in the cup every half minute up to and including *t* = 2 minutes.
- At $t = 2\frac{1}{2}$ minutes add all the **FB 2** into the cup and stir the contents until *t* is nearly 3 minutes.
- Measure and record the temperature of the mixture in the cup every half minute from *t* = 3 minutes until *t* = 8 minutes. Stir occasionally throughout this time.
- Weigh the container and any residual **FB 2**. Record this mass and calculate the mass of **FB 2** added.


Results

Mass


mass of FBQ + tube 19	29.53
mass of tube + residue/g	28.65
mass of FB2 used/g	0.88


Temperature

Time /min	Temperature /c	Time / min	Temperature /2
0	24.0	4½	42.0
1/2	24.0	5	42.5
1	24.0	51/2	43.0
1/2	24.0	6	42.5
2	24.0	61/2	42.5
3	36.5	7	42.5
31/2	39.0	7½	42.D
4	41.0	8	42.0

(b) Plot a graph of temperature on the *y*-axis against time on the *x*-axis on the grid below. The scale for temperature should extend 3 °C above your highest recorded temperature. You will use the graph to determine the theoretical maximum temperature rise at $t = 2\frac{1}{2}$ minutes.

Draw two lines of best fit through the points on your graph, the first for the temperature before adding **FB 2** and the second for the temperature of the mixture after addition of **FB 2**. Extrapolate the lines to $t = 2\frac{1}{2}$ minutes and determine the theoretical maximum temperature rise, ΔT .

theoretical maximum temperature rise at $t = 2\frac{1}{2}$ minutes, $\Delta T = \dots \circ C$ [4]

(c) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Use your answer to (b) to calculate the heat energy, in J, given out when FB 2 was added to the FB 1 in the cup.
(Assume that 4.2J of heat energy raises the temperature of 1.0 cm³ of the mixture by 1.0 °C.)

heat energy given out = J

(ii) Use your answer to (i) and the Periodic Table on page 11 to calculate the enthalpy change, in kJ mol⁻¹, for the displacement reaction.

 $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$

You should assume that FB 2 was pure zinc for this calculation.

enthalpy change, $\Delta H = \dots$ kJ mol⁻¹ (sign) (value) [3]

(d) The accepted value for the enthalpy change of this reaction is -217 kJ mol^{-1} .

Assuming no heat loss and that the other metals present in **FB 2** do not react with aqueous copper(II) sulfate, calculate the percentage of zinc present in **FB 2**.

percentage of Zn = % [1]

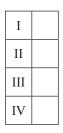
(e) A student carried out the same experiment but used pieces of zinc instead of zinc powder. All quantities and the initial temperature of the aqueous copper(II) sulfate remained the same.

State and explain what effects this change would have on the graph plotted.

[2] [Total: 14] 2 Solid hydrated copper(II) sulfate has the formula CuSO₄.**x**H₂O where **x** is the number of moles of water of crystallisation present in 1 mole of compound.

You will determine the equation for the reaction that occurs when hydrated copper(II) sulfate is heated to remove the water of crystallisation producing anhydrous copper(II) sulfate.

FB 3 is hydrated copper(II) sulfate $CuSO_4$.**x**H₂O.


(a) Method

Record all masses in the space below.

- Weigh the crucible and add 2.2–2.4g of FB 3.
- Weigh the crucible plus **FB 3**.
- Place the crucible on the pipe-clay triangle and heat it gently for approximately 4 minutes.
- Leave the crucible to cool and reweigh the crucible plus residue.

Keep the crucible and residue for test (c).

mass of crucible /g	23.51
mass of crucible + FB3/g	25.81
mass & FB3 before heating/g	2.30
mass of crucible + FB3 after heating/g	<i>2</i> 4.98

[4]

(b) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the mass of anhydrous copper(II) sulfate, CuSO₄, produced after heating.

mass of $CuSO_4$ = g

(ii) Calculate the mass of water lost by heating.

mass of water = g

(iii) Use your answers to (i) and (ii) and the Periodic Table on page 11 to deduce the value of x in the formula CuSO₄.xH₂O.

x is

(iv) Use your answer to (iii) to complete the equation for the reaction that occurs when hydrated copper(II) sulfate is heated. You should include state symbols.

$$CuSO_4....H_2O(....) \rightarrow CuSO_4(...) + ...H_2O(...)$$

[4]

- (c) Place the cooled crucible, with the residue, on a heatproof mat and carefully add a few drops of water.
 - (i) Note your observations.

.....

(ii) Explain your observations in (i) in terms of the reaction occurring.

[3]

(d) Two students carried out the experiment in (a) and obtained values for x that did not agree with the accepted value. One student calculated a value that was less than the accepted value and the other student calculated a value that was more than the accepted value.

In each case, suggest a reason for the error and an improvement that could be made to minimise it. You can assume that the calculations were correctly carried out.

Value less than accepted value

ror	
provement	
alue more than accepted value	
ror	
provement	[2]
	[2]

[Total: 13]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) **FB 4** and **FB 5** are aqueous solutions of equal concentrations, in mol dm⁻³. Each contains one anion and one cation. The cation is the same in both **FB 4** and **FB 5**.

Half fill the 250 cm³ beaker with water. Heat the water to about 80 °C and then turn off the Bunsen burner. This is the hot water bath needed in the tests below.

To about a 2cm depth of aqueous silver nitrate in a test-tube, add a few drops of aqueous sodium hydroxide to give a grey/brown precipitate. Then add aqueous ammonia dropwise until the precipitate **just** disappears. This solution is Tollens' reagent and is needed in a test below.

(i) Carry out the tests on separate samples of **FB 4** and **FB 5** and complete the table.

10-01			observ	vations
test	(methanoic) Acid	FB 4	H-C-OH	FB 5 (HCI)
To a 1 cm depth of solution in a test-tube in a test-tube rack, add a spatula measure of sodium carbonate.				
To a 1 cm depth of solution in a test-tube, add a few drops of acidified potassium manganate(VII). Place the test-tube in the hot water bath.				
To a 1 cm depth of Tollens' reagent in a test-tube, add a few drops of solution. Place the test-tube in the hot water bath and leave for several minutes.				

(ii) From your observations in (i), identify the cation present in **both FB 4** and **FB 5**.

cation

(iii) From your observations in (i), what can be deduced about the anion present in FB 4?

.....

(iv) Place a 1 cm depth of FB 4 and FB 5 separately in two test-tubes.

Measure and record the temperature of the two solutions.

To each solution, add an approximately 2 cm length of magnesium ribbon. Measure and record the maximum temperature reached in each test-tube.

(v) Explain why there is a difference in the temperature rise for the reactions of magnesium with solutions **FB 4** and **FB 5**.

[8]

 $\rightarrow [Z_n (NO_3)_2 + NH_4 CI]$

(b) **FB 6** is a solid that contains two cations from those listed on page 9.

You are to plan a series of experiments that will enable you to identify the cations present. You should then carry out your plan, record all the observations you made in a suitable table and identify the cations present.

cations present are and

[5] [Total: 13]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ian	react	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_
barium, Ba²⁺(aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca²⁺(aq)	white ppt. with high [Ca²+(aq)]	no ppt.
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu²⁺(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l⁻</i> (aq)	gives white ppt. with Ag⁺(aq) (soluble in NH₃(aq))
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint

14 15 16 17 14 15 16 17 14 15 16 17 15 16 7 8 9 15 16 7 8 9 15 14 15 16 17 12.00 11096 10006 10006 10006 11.1 11.1 15 16 17 16 14 15 5 5 16 17 11.1 13.10 0.0 16.0 10006 1006 1006 28.1 8 33 34 35 5<	-							Group	Group								
If y is the propertication of the properint of the propertication of the propertication of the p												13	14	15	16	17	18
Very constrained with the formation of							- I										2 He
				Key			hydrogen 1.0										helium 4.0
Rev				atomic number								5	9	7	8	6	10
			atc	mic sym	loc							В	U	z	0	Ŀ	Ne
			rel	name ative atomic ma	ISS							boron 10.8	carbon 12.0	nitrogen 14.0		fluorine 19.0	neon 20.2
	\vdash					_						13	14	15		17	18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												Al	S:	٩		Cl	Ar
			4	5	9	7	ø	6	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0		chlorine 35.5	argon 39.9
		21	22	23	24	25	26	27	28	29	30	31	32	33		35	36
		Sc	F	>	ŗ	Mn	Ъе	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Br	Ъ
38 30 40 41 42 43 44 45 46 47 48 40 51 52 53 54 52 53 56 51 52 53 16 17 55 55 16 17 73 74 75 73 74 75 75 75 76 77 78 79 90 91 91 71 71 75 76 77 78 79 90 91 187 173 71 77 71 76 77 78 79 70 71 71 73 74 75 76 77 78 79 90 112 112 112 112 112 112 112 112 113 112 127 126 126 126 127 126 126 127 126 126 127 126 127 126 127 127 127 127 <		scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
Sr Y Zr Nb Mo Tc Ru Rh Pd Aq Cd In Sn Sb Te I strontin within wit		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		≻	Zr	qN	Mo		Ru	Rh	Ъd	Ag	Cd	In	Sn	Sb	Te	I	Xe
56 $57-71$ 72 73 74 75 76 77 78 79 80 81 82 83 64 85 84 84 <		yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9		ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
BaInfluenciesHfTaWReOSIrPtAuHgTiPDBiPOAt137317851803180318621902186119221661197020061071080At137317851803168107108109110111112200204416811000At8889-103178180316810710810911011111220020441688actinoisRfDbSgBhHSMitDS8047011112200.001111111111122044100111		57-71	72	73	74		76	77	78	79	80	81	82	83	84	85	86
		lanthanoids	Ηf	Та	8	Re	SO	Ir	Ŧ	Au	Hg	11	Pb	ï	Ро	At	Rn
88 89-103 104 105 106 107 108 109 110 111 112 114 116 </td <td></td> <td></td> <td>hafnium 178.5</td> <td>tantalum 180.9</td> <td>tungsten 183.8</td> <td>rhenium 186.2</td> <td>osmium 190.2</td> <td>iridium 192.2</td> <td>platinum 195.1</td> <td>gold 197.0</td> <td>mercury 200.6</td> <td>thallium 204.4</td> <td>lead 207.2</td> <td>bismuth 209.0</td> <td>polonium I</td> <td>astatine -</td> <td>radon -</td>			hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium I	astatine -	radon -
Rate actionids Rf Db Sg Bh Hs Mt Ds Rg Cn addim unterfordium dubium seaborgium bohrium seaborgium configerium <		89-103	104	105	106	107	108	109	110	111	112		114		116		
addun Interfordum dubium seaborgum bortum leasongum bortum leasongum leasongum <thleasongum< th=""> le</thleasongum<>		actinoids	Ŗ	Db	Sg	Bh	Hs	Mt	Ds	Rg	C		Fl		۲<		
57 58 59 60 61 62 63 64 65 66 67 68 69 70 Ianthanum certum Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb Ianthanum certum preseodynium promethium samarium europium gadoinium tectum 452.0 158.9 163.9 173.1 138.9 140.1 140.9 T44.4 - 152.0 157.3 158.9 162.5 168.9 173.1 88 90 91 92 93 94 95 96 97 98 173.1 201 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.1 201 173.1 158.9 167.3 168.9 173.1 173.1 201 173.0 158.9 167.3 168.9 173.1 173.1 A			rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
57 58 59 60 61 62 63 64 65 66 67 68 69 70 La Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb 138.9 140.1 140.9 74.4 - 152.0 157.3 158.9 162.5 167.3 168.9 173.1 138.9 90 91 92 93 94 95 96 97 98 99 100 101 102 168.9 173.1 Ac Th Pa U Np Pu Am Cm BK Cf ES 163.9 173.1 2320.0 231.0 233.0 - 167.4 152.0 157.3 168.9 173.1 - 2320.0 231.0 231.0 231.0 231.0 100 101 102 - 2323.0 233.0	-	_														-	
ds La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Ianthanun ceriun peaseojmiun neodyniun samariun europiun gadoiniun tetuiu fgl Th Yb Ianthanun ceriun peaseojmiun neodyniun samariun europiun gadoiniun tetuiu tetu		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
Janthanum certum presedymium recodynium returbit yrecodynium returbit retur	thanoids	La	0e	Pr	ΡN	Pm	Sm	Eu	рд	Тb	Dy	Ю	ц	Tm	Υb	Lu	
89 90 91 92 93 94 95 96 97 98 99 100 101 102 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No actinum protuction protocol americum curium bekelium ensitenium nondelevium nobelium - 232.0 - </td <td></td> <td>lanthanum 138.9</td> <td>cerium 140.1</td> <td>praseodymium 140.9</td> <td>neodymium 144.4</td> <td>promethium -</td> <td>samarium 150.4</td> <td>europium 152.0</td> <td>gadolinium 157.3</td> <td>terbium 158.9</td> <td>dysprosium 162.5</td> <td>holmium 164.9</td> <td>erbium 167.3</td> <td>thulium 168.9</td> <td>ytterbium 173.1</td> <td>Iutetium 175.0</td> <td></td>		lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.4	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No actinum thorium protactinum uranium neptunium plutonium americum arritorium arritorium arritorium neodelium		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium 232.0 231.0 238.0	inoids	Ac	Тh	Ра		Чр	Pu	Am	СЗ	Ŗ	ç	Es	Еm	Md	No	Ļ	
		actinium	thorium	protactinium	uranium 238 D	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	

The Periodic Table of Elements